A comparative computational study of blood flow pattern in exemplary textile vascular grafts

Raúl A. Valencia, Manuel J. García, John Bustamante

Research output: Contribution to journalArticle in an indexed scientific journalpeer-review

6 Scopus citations

Abstract

Textile vascular grafts are biomedical devices and play an important role serving as a solution for the partial replacement of damaged arterial vessels. It is believed that the success of a textile vascular graft, in the healing process after implantation, is due to the porous micro-structure of the wall. Although the transport of fluids through textiles is of great technical interest in biomedical applications, little is known about predicting the micro-flow pattern and cellular transport through the wall. The aim of this work is to investigate how the type of fabric, permeability and porosity affect both the local fluid dynamics at several scales and the fluid-particle interaction between platelets in textile grafts, related with the graft occlusion. This study involves both experimental and computational tests. Experimental tests are performed to characterize the permeability and porosity according to the ISO 7198 standard. The numerical process is based on a multi-scale approach where the fluid flow is solved with the Finite Element Method and the discrete particles are solved with the Molecular Dynamic Method. The results have shown that the type of fabric in textile vascular grafts and the degree of porosity and permeability affect both the local fluid dynamics and the level of penetration of platelets through the wall, thus indicating their importance as design parameters.

Original languageEnglish
Pages (from-to)858-870
Number of pages13
JournalJournal of the Textile Institute
Volume109
Issue number7
DOIs
StatePublished - 3 Jul 2018

Bibliographical note

Publisher Copyright:
© 2017 Informa UK Limited, trading as Taylor & Francis Group.

Keywords

  • Textile vascular grafts
  • fluid-particle interactions
  • local fluid dynamics
  • multi-scale approach
  • porous media

Fingerprint

Dive into the research topics of 'A comparative computational study of blood flow pattern in exemplary textile vascular grafts'. Together they form a unique fingerprint.

Cite this