Direct functionalization of carbon nanotubes with phosphate

Ana M. Torres, Lina M. Hoyos, John J. Bustamante, Andrés M. Garay-Tapia

Research output: Contribution to journalArticle in an indexed scientific journalpeer-review

1 Scopus citations

Abstract

With the goal of functionalizing carbon nanotubes for possible applications in biological and biomedical environments, we investigated the interactions between perfect and defective single walled carbon nanotubes (SWCNTs) and phosphate groups using density functional theory (DFT). The phosphate groups included phosphoric acid (H3PO4) and dihydrogen phosphate (H2PO4). Defects included monovacancy, divacancy, and Stone-Wales (SW) defects. Our results revealed that with H3PO4, functionalization occurs by an electrostatic interaction, and no significant changes were observed in the band structures or in the band gap. With H2PO4, functionalization occurs through C-O interaction, and is mainly favored in the presence of a monovacancy or SW defect. With a monovancy defect, the nanotube preserves its sp2 hybridization, whereas with divacancy and SW defects, local sp3 hybridization occurs. Functionalizationwith H2PO4 resulted in changes in the band structures and the band gap of perfect and defective (10, 0) SWCNTs. These changes are caused by electronic localization states on the Fermi level, but the semiconductor behavior of nanotubes is preserved.

Original languageEnglish
Pages (from-to)7640-7648
Number of pages9
JournalJournal of Computational and Theoretical Nanoscience
Volume13
Issue number10
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© Copyright 2016 American Scientific Publishers All rights reserved.

Keywords

  • Carbon nanotubes
  • DFT
  • Phosphate functionalization

Fingerprint

Dive into the research topics of 'Direct functionalization of carbon nanotubes with phosphate'. Together they form a unique fingerprint.

Cite this