Noninvasive ultrasound for Lithium-ion batteries state estimation

Simon Montoya-Bedoya, Miguel Bernal, Laura A. Sabogal-Moncada, Hader V. Martinez-Tejada, Esteban Garcia Tamayo

Research output: Chapter in Book/Report/Conference proceedingConference and proceedingspeer-review

6 Scopus citations

Abstract

Lithium-ion battery degradation estimation using fast and noninvasive techniques is a crucial issue in the circular economy framework of this technology. Currently, most of the approaches used to establish the battery-state (i.e., State of Charge (SoC), State of Health (SoH)) require time-consuming processes. In the present preliminary study, an ultrasound array was used to assess the influence of the SoC and SoH on the variations in the time of flight (TOF) and the speed of sound (SOS) of the ultrasound wave inside the batteries. Nine aged 18650 Lithium-ion batteries were imaged at 100% and 0% SoC using a Vantage-256 system (Verasonics, Inc.) equipped with a 64-element ultrasound array and a center frequency of 5 MHz (Imasonic SAS). It was found that second-life batteries have a complex ultrasound response due to the presence of many degradation pathways and, thus, making it harder to analyze the ultrasound measurements.

Original languageEnglish
Title of host publicationLAUS 2021 - 2021 IEEE UFFC Latin America Ultrasonics Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665443593
DOIs
StatePublished - 2021
Event2021 IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2021 - Gainesville, United States
Duration: 4 Oct 20215 Oct 2021

Publication series

NameLAUS 2021 - 2021 IEEE UFFC Latin America Ultrasonics Symposium, Proceedings

Conference

Conference2021 IEEE UFFC Latin America Ultrasonics Symposium, LAUS 2021
Country/TerritoryUnited States
CityGainesville
Period4/10/215/10/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE.

Keywords

  • Lithium-ion batteries
  • Non-destructive evaluation
  • Second-life batteries
  • State of charge
  • State of health
  • Ultrasound

Types Minciencias

  • Eventos científicos con componente de apropiación

Fingerprint

Dive into the research topics of 'Noninvasive ultrasound for Lithium-ion batteries state estimation'. Together they form a unique fingerprint.

Cite this