TY - GEN
T1 - A hierarchical architecture for the adaptive mode transition control of unmanned aerial vehicles
AU - Gutiérrez, Luis B.
AU - Vachtsevanos, George
AU - Heck, Bonnie
PY - 2003
Y1 - 2003
N2 - In this paper, a hierarchical/intelligent control architecture for an unmanned aerial vehicle (UAV) is proposed. The architecture consists of three levels: the highest level is occupied by mission planning routines. At this level, information about the way points the vehicle must follow is available and logic-based routines decide upon mission tasks while maintaining physical constraints and generate the task queue. The mid-level controller coordinates the task execution while a trajectory generation component receives the task information from the high-level module and provides set points for lowlevel stabilizing controllers whose function is to maintain the vehicle in a stable state and to follow accurately the commanded trajectory. An adaptive mode transitioning control algorithm resides also at the lowest level of the hierarchy consisting of two components: a mode transitioning controller and the accompanying adaptation mechanism. The adaptation routine may be turned on only when needed. The transitioning algorithm operates in real-time while adapting on-line to disturbances and other external inputs. This intelligent/hierarchical architecture is being implemented using a novel software infrastructure called Open Control Platform, which facilitates interoperability, plug-and-play and other functionalities. Simulation results illustrate the robustness and effectiveness of the proposed scheme. An actual flight demonstration is planned for the near future as part of a DARPA sponsored research program.
AB - In this paper, a hierarchical/intelligent control architecture for an unmanned aerial vehicle (UAV) is proposed. The architecture consists of three levels: the highest level is occupied by mission planning routines. At this level, information about the way points the vehicle must follow is available and logic-based routines decide upon mission tasks while maintaining physical constraints and generate the task queue. The mid-level controller coordinates the task execution while a trajectory generation component receives the task information from the high-level module and provides set points for lowlevel stabilizing controllers whose function is to maintain the vehicle in a stable state and to follow accurately the commanded trajectory. An adaptive mode transitioning control algorithm resides also at the lowest level of the hierarchy consisting of two components: a mode transitioning controller and the accompanying adaptation mechanism. The adaptation routine may be turned on only when needed. The transitioning algorithm operates in real-time while adapting on-line to disturbances and other external inputs. This intelligent/hierarchical architecture is being implemented using a novel software infrastructure called Open Control Platform, which facilitates interoperability, plug-and-play and other functionalities. Simulation results illustrate the robustness and effectiveness of the proposed scheme. An actual flight demonstration is planned for the near future as part of a DARPA sponsored research program.
UR - http://www.scopus.com/inward/record.url?scp=84896825912&partnerID=8YFLogxK
M3 - Ponencia publicada en las memorias del evento con ISBN
AN - SCOPUS:84896825912
SN - 9781563479786
SN - 9781624100901
T3 - AIAA Guidance, Navigation, and Control Conference and Exhibit
BT - AIAA Guidance, Navigation, and Control Conference and Exhibit
T2 - AIAA Guidance, Navigation, and Control Conference and Exhibit 2003
Y2 - 11 August 2003 through 14 August 2003
ER -