A review on data-driven fault severity assessment in rolling bearings

Mariela Cerrada, René Vinicio Sánchez, Chuan Li, Fannia Pacheco, Diego Cabrera, José Valente de Oliveira, Rafael E. Vásquez

    Producción científica: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

    546 Citas (Scopus)


    Health condition monitoring of rotating machinery is a crucial task to guarantee reliability in industrial processes. In particular, bearings are mechanical components used in most rotating devices and they represent the main source of faults in such equipments; reason for which research activities on detecting and diagnosing their faults have increased. Fault detection aims at identifying whether the device is or not in a fault condition, and diagnosis is commonly oriented towards identifying the fault mode of the device, after detection. An important step after fault detection and diagnosis is the analysis of the magnitude or the degradation level of the fault, because this represents a support to the decision-making process in condition based-maintenance. However, no extensive works are devoted to analyse this problem, or some works tackle it from the fault diagnosis point of view. In a rough manner, fault severity is associated with the magnitude of the fault. In bearings, fault severity can be related to the physical size of fault or a general degradation of the component. Due to literature regarding the severity assessment of bearing damages is limited, this paper aims at discussing the recent methods and techniques used to achieve the fault severity evaluation in the main components of the rolling bearings, such as inner race, outer race, and ball. The review is mainly focused on data-driven approaches such as signal processing for extracting the proper fault signatures associated with the damage degradation, and learning approaches that are used to identify degradation patterns with regards to health conditions. Finally, new challenges are highlighted in order to develop new contributions in this field.

    Idioma originalInglés
    Páginas (desde-hasta)169-196
    Número de páginas28
    PublicaciónMechanical Systems and Signal Processing
    EstadoPublicada - 15 ene. 2018

    Nota bibliográfica

    Publisher Copyright:
    © 2017 Elsevier Ltd

    Tipos de Productos Minciencias

    • Artículos de investigación con calidad A1 / Q1


    Profundice en los temas de investigación de 'A review on data-driven fault severity assessment in rolling bearings'. En conjunto forman una huella única.

    Citar esto