TY - JOUR
T1 - An efficient accurate Local Method of Approximate Particular Solutions for solving convection-diffusion problems
AU - Bustamante, C. A.
AU - Power, H.
AU - Florez, W. F.
PY - 2014/10
Y1 - 2014/10
N2 - An efficient accurate Local Method of Approximate Particular Solutions (LMAPS) using Multiquadric Radial Basis Functions (RBFs) for solving convection-diffusion problems is proposed. It consists in adding auxiliary points to the local interpolation stencil at which the governing PDE is enforced, known as PDE points, besides imposing the boundary condition at the stencil in contact with the problem boundary. Two convection-diffusion problems are considered as test problems and solved with two previous local direct RBF collocation schemes (with and without PDE points) and two LMAPS (with and without PDE points), as well as the Global MAPS, in order to compare accuracy, convergence order and their behaviour in terms of the shape parameter. If PDE points are added, the result accuracy is improved as well as the convergence rate when using both local direct and MAPS formulations.
AB - An efficient accurate Local Method of Approximate Particular Solutions (LMAPS) using Multiquadric Radial Basis Functions (RBFs) for solving convection-diffusion problems is proposed. It consists in adding auxiliary points to the local interpolation stencil at which the governing PDE is enforced, known as PDE points, besides imposing the boundary condition at the stencil in contact with the problem boundary. Two convection-diffusion problems are considered as test problems and solved with two previous local direct RBF collocation schemes (with and without PDE points) and two LMAPS (with and without PDE points), as well as the Global MAPS, in order to compare accuracy, convergence order and their behaviour in terms of the shape parameter. If PDE points are added, the result accuracy is improved as well as the convergence rate when using both local direct and MAPS formulations.
KW - Convection-diffusion equation
KW - Meshless methods
KW - Particular solutions
KW - Radial basis functions
UR - http://www.scopus.com/inward/record.url?scp=84903990874&partnerID=8YFLogxK
U2 - 10.1016/j.enganabound.2014.06.004
DO - 10.1016/j.enganabound.2014.06.004
M3 - Artículo en revista científica indexada
AN - SCOPUS:84903990874
SN - 0955-7997
VL - 47
SP - 32
EP - 37
JO - Engineering Analysis with Boundary Elements
JF - Engineering Analysis with Boundary Elements
IS - 1
ER -