Resumen
Introduction: prosthetic heart valves are evaluated using different techniques that involve in vitro studies and computational methods in addition to conventional clinical studies. Functional data to evaluate reflect the need for highly sensitive methods to determine its operating conditions that may emulate specific hemodynamic situations. With this objective, we designed an alternative method for better understanding the functionality of these models, analyzing in vitro fluid dynamic behavior of two models of mechanical heart valves using a wind tunnel. METHODS: we designed and developed a wind tunnel providing instrumental conditions that permit the evaluation of mechanical valves in different fluid dynamic conditions: subsonic tunnel of circular section (standard ANSI/AMCA_210-99 and ANSI/ASHRAE_51-99). Using the method of dynamic similarity, the experiment was characterized using typical values of flow rates and blood properties in a healthy adult. Results And Discussion: we evaluated two SJM® valve models, one with flat leaflet, and a variant of convex valves with air flows equivalent to blood flow rates of 1.5, 6.0 and 9.3 L/min. The convex valve prosthesis has a flow divided in three equivalent fields, in contrast to the flat valves that have a smaller central flow and two predominant laterals. The drag phenomenon produced by the two external currents wit regard to the central generates a higher RNS for the SJM® valve than the generated for the variant of convex valves. The velocity field adjacent to the convex side is less affected by turbulence than in the case of the flat leaflet, but on the contrary, the adjacent field to the concave side is more affected by local fluid dynamic effects: changes in direction, area reduction and increased velocity. Conclusions: the implemented method uses fluid dynamic characteristics of air in a wind tunnel, for in vitro evaluation of the influence on the flow field and shear forces of different models of mechanical heart valves, obtaining higher sensitivity than other alternatives available. The system was used to evaluate two types of prosthesis, showing that the curve leaflets tend to have less disruption of the flow than the flat valves. The implementation of the system presented as a new test bench allows to draw conclusions that serve as the basis for the design of the prosthesis, looking to offer less hemodynamic disturbance.
Título traducido de la contribución | Análisis in vitro de la influencia sobre el campo de flujo de dos modelos de válvulas cardiacas mecánicas bivalvas mediante un túnel de viento |
---|---|
Idioma original | Inglés |
Páginas (desde-hasta) | 89-99 |
Número de páginas | 11 |
Publicación | Revista Colombiana de Cardiologia |
Volumen | 18 |
N.º | 2 |
DOI | |
Estado | Publicada - 2011 |