Boundary elements solution of stokes flow between curved surfaces with nonlinear slip boundary condition

Cesar Nieto, Henry Power, Mauricio Giraldo

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

This work presents a boundary integral equation formulation for Stokes nonlinear slip flows based on the normal and tangential projection of the Green's integral representational formulae for the velocity field. By imposing the surface tangential velocity discontinuity (slip velocity) in terms of the nonlinear slip flow boundary condition, a system of nonlinear boundary integral equations for the unknown normal and tangential components of the surface traction is obtained. The Boundary Element Method is used to solve the resulting system of integral equations using a direct Picard iteration scheme to deal with the resulting nonlinear terms. The formulation is used to study flows between curved rotating geometries: i.e., concentric and eccentric Couette flows and single rotor mixers, under nonlinear slip boundary conditions. The numerical results obtained for the concentric Couette flow is validated again a semianalytical solution of the problem, showing excellent agreements. The other two cases, eccentric Couette and single rotor mixers, are considered to study the effect of different nonlinear slip conditions in these flow configurations.

Idioma originalInglés
Páginas (desde-hasta)757-777
Número de páginas21
PublicaciónNumerical Methods for Partial Differential Equations
Volumen29
N.º3
DOI
EstadoPublicada - may. 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Boundary elements solution of stokes flow between curved surfaces with nonlinear slip boundary condition'. En conjunto forman una huella única.

Citar esto