TY - JOUR
T1 - Carbon black recovery from waste tire pyrolysis by demineralization
T2 - Production and application in rubber compounding
AU - Martínez, Juan Daniel
AU - Cardona-Uribe, Natalia
AU - Murillo, Ramón
AU - García, Tomás
AU - López, José Manuel
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/2/15
Y1 - 2019/2/15
N2 - Pyrolysis offers the possibility to convert waste tires into liquid and gaseous fractions as well as a carbon-rich solid (CBp), which contains the original carbon black (CB) and the inorganic compounds used in tire manufacture. Whilst both liquid and gaseous fractions can be valorized without further processing, there is a general consensus that CBp needs to be improved before it can be considered a commercial product, seriously penalizing the pyrolysis process profitability. In this work, the CBp produced in a continuous pyrolysis process was demineralized (chemical leaching) with the aim of recovering the CB trapped into the CBp and thus, producing a standardized CB product for commercial purposes. The demineralization process was conducted by using cheap and common reagents (HCl and NaOH). In this sense, the acid treatment removed most of the mineral matter contained in the CBp and concentration was the main parameter controlling the demineralization process. An ash content of 4.9 wt% was obtained by using 60 min of soaking time, 60 °C of temperature, 10 mL/g of reagent/CBp ratio and HCl 4 M. The demineralized CBp (dCBp) showed a carbon content of 92.9 wt%, while the FRX analysis indicated that SiO 2 is the major component into the ash. The BET surface area was 76.3 m 2 /g, and textural characterizations (SEM/EDX and TEM) revealed that dCBp is composed by primary particles lower than 100 nm. Although dCBp showed a low structure, the surface chemistry was rich in surface acidic groups. Finally, dCBp was used in Styrene Butadiene Rubber (SBR) compounding, probing its technical feasibility as substitute of commercial CB N550
AB - Pyrolysis offers the possibility to convert waste tires into liquid and gaseous fractions as well as a carbon-rich solid (CBp), which contains the original carbon black (CB) and the inorganic compounds used in tire manufacture. Whilst both liquid and gaseous fractions can be valorized without further processing, there is a general consensus that CBp needs to be improved before it can be considered a commercial product, seriously penalizing the pyrolysis process profitability. In this work, the CBp produced in a continuous pyrolysis process was demineralized (chemical leaching) with the aim of recovering the CB trapped into the CBp and thus, producing a standardized CB product for commercial purposes. The demineralization process was conducted by using cheap and common reagents (HCl and NaOH). In this sense, the acid treatment removed most of the mineral matter contained in the CBp and concentration was the main parameter controlling the demineralization process. An ash content of 4.9 wt% was obtained by using 60 min of soaking time, 60 °C of temperature, 10 mL/g of reagent/CBp ratio and HCl 4 M. The demineralized CBp (dCBp) showed a carbon content of 92.9 wt%, while the FRX analysis indicated that SiO 2 is the major component into the ash. The BET surface area was 76.3 m 2 /g, and textural characterizations (SEM/EDX and TEM) revealed that dCBp is composed by primary particles lower than 100 nm. Although dCBp showed a low structure, the surface chemistry was rich in surface acidic groups. Finally, dCBp was used in Styrene Butadiene Rubber (SBR) compounding, probing its technical feasibility as substitute of commercial CB N550
KW - Carbon black
KW - Carbon black recovery
KW - Demineralization
KW - Pyrolysis
KW - Waste tire
UR - http://www.scopus.com/inward/record.url?scp=85060328922&partnerID=8YFLogxK
U2 - 10.1016/j.wasman.2019.01.016
DO - 10.1016/j.wasman.2019.01.016
M3 - Artículo en revista científica indexada
C2 - 30803613
AN - SCOPUS:85060328922
SN - 0956-053X
VL - 85
SP - 574
EP - 584
JO - Waste Management
JF - Waste Management
ER -