TY - JOUR
T1 - Comparison of Mango (Mangifera indica) Dehydration Technologies: A Systematic Review
AU - López, Luna C.
AU - Hincapié-Llanos, Gustavo Adolfo
PY - 2024/8/6
Y1 - 2024/8/6
N2 - The convective hot-air drying technology can cause physicochemical, nutritional, and organoleptic losses in the mango (Mangifera indica). The present Systematic Review was carried out with the objective of comparing mango dehydration technologies to identify the effects on the physicochemical, nutritional, and organoleptic properties of the fruit. Through a review of published scientific and conference papers in the Scopus database, adjusted to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) methodology, a total of 134 documents dated between 2000 and December 6 of 2022 were obtained; 76 of these documents were finally included in the bibliographic and theoretical analysis. Selection parameters emphasizing the relationship between the articles and the research topic, evidenced by including at least one of three dehydration technologies and the fruit of interest with an experimental or theoretical approach to the dehydration subject; review articles and surveys were excluded. Correlation graphs of bibliographic variables were made using the data mining software VantagePoint (version 15.1), which was graphically restructured in Microsoft Excel with the support of statistical analysis. Of the resulting articles, it was found that the countries with authors who participated most in scientific production like India, Brazil, Colombia, the United States, and Thailand, were those related to mango production or importation. Furthermore, the freeze-drying technology allows operating at lower temperatures than convective hot-air drying, contributing to the preservation of ascorbic acid, among other compounds. The refractance window has the shortest operation time to obtain moisture values between 10 and 20%. The dehydrated samples using the refractance window are smooth, homogeneous, non-porous, and comparable to the color obtained with freeze-drying, which is acceptable for industrial applications.
AB - The convective hot-air drying technology can cause physicochemical, nutritional, and organoleptic losses in the mango (Mangifera indica). The present Systematic Review was carried out with the objective of comparing mango dehydration technologies to identify the effects on the physicochemical, nutritional, and organoleptic properties of the fruit. Through a review of published scientific and conference papers in the Scopus database, adjusted to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) methodology, a total of 134 documents dated between 2000 and December 6 of 2022 were obtained; 76 of these documents were finally included in the bibliographic and theoretical analysis. Selection parameters emphasizing the relationship between the articles and the research topic, evidenced by including at least one of three dehydration technologies and the fruit of interest with an experimental or theoretical approach to the dehydration subject; review articles and surveys were excluded. Correlation graphs of bibliographic variables were made using the data mining software VantagePoint (version 15.1), which was graphically restructured in Microsoft Excel with the support of statistical analysis. Of the resulting articles, it was found that the countries with authors who participated most in scientific production like India, Brazil, Colombia, the United States, and Thailand, were those related to mango production or importation. Furthermore, the freeze-drying technology allows operating at lower temperatures than convective hot-air drying, contributing to the preservation of ascorbic acid, among other compounds. The refractance window has the shortest operation time to obtain moisture values between 10 and 20%. The dehydrated samples using the refractance window are smooth, homogeneous, non-porous, and comparable to the color obtained with freeze-drying, which is acceptable for industrial applications.
UR - https://doi.org/10.3390/agriengineering6030157
U2 - 10.3390/agriengineering6030157
DO - 10.3390/agriengineering6030157
M3 - Artículo en revista científica indexada
SN - 2624-7402
VL - 6
JO - AgriEngineering
JF - AgriEngineering
ER -