Computer-Aided Simulation of the Volumetric Efficiency of a 2 MW Gas Engine

Guillermo E. Valencia, Franklin E. Consuegra, Marisol Osorio

Producción científica: Capítulo del libro/informe/acta de congresoCapítulo de libro resultado de investigaciónrevisión exhaustiva

2 Citas (Scopus)


In a mean value thermodynamic model of an internal combustion engine, operational parameters such as volumetric efficiency have a significant effect on the thermal performance of the engine, for example the combustion process inside the cylinder depends on the air-fuel ratio, large amounts of air are introduced to the combustion chamber require and consequently more fuel it is needed, which traduces in a higher output engine torque and electrical power. The air-fuel flow in the admission line has an appreciable inertia due to the turbocharged operation, but the intake manifold, the admission valves and the throttle act as an obstruction for the air-natural gas. Considering everything considered before, this paper proposes a model for the volumetric efficiency on the 2 MW Jenbacher Gas Engine, which is the capacity of the engine to fill the available geometric volume of the engine with a new charge of the air-fuel mix. A thermodynamic model was introduced to study the ratio between the real volume of air drawn off the cylinder, concerning the theoretical geometric volume of the cylinder based on a typical day of operation of the thermal power plant. Finally, to show the impact of the volumetric efficiency on the model results, a regression as a function of the intake manifold temperature and pressure, the volumetric gas flow and the engine revolutions was proposed. This allows to estimate the engine volumetric efficiency with a quadratic accumulated error ranging from 5.65 (when the volumetric efficiency model depends only on the air-gas mixture pressure) to 1.94 (when the model was correlated as a function of the pressure and temperature of the inlet manifold, motor angular speed, and the volumetric natural gas flow). The study gives evidence about a successful simulation of a Natural Gas Engine thermodynamic model built in Matlab due to the similarity found between the simulated results and the experimental data obtained fromt the data acquisition software installed on the equipment, obtaining in most cases a good accuracy to predict the effective efficiency and the electric power under different operation conditions.
Idioma originalInglés
Título de la publicación alojadaComputer Aided Chemical Engineering
EditoresAnton Friedl, Jiří J. Klemeš, Stefan Radl, Petar S. Varbanov, Thomas Wallek
EditorialElsevier B.V.
Número de páginas6
ISBN (versión impresa)9780444642356
EstadoPublicada - 1 ene. 2018

Serie de la publicación

NombreComputer Aided Chemical Engineering
ISSN (versión impresa)1570-7946

Nota bibliográfica

Publisher Copyright:
© 2018 Elsevier B.V.

Tipos de Productos Minciencias

  • Artículos de investigación con calidad Q4


Profundice en los temas de investigación de 'Computer-Aided Simulation of the Volumetric Efficiency of a 2 MW Gas Engine'. En conjunto forman una huella única.

Citar esto