Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system

Jorge I. Silva-Ortega (Autor estudiante de doctorado), Brian Cervantes-Bolivar, Idi A. Isaac-Millan, Yulineth Cardenas-Escorcia, Guillermo Valencia-Ochoa

Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

5 Citas (Scopus)

Resumen

Demand estimation models are used for energy planning activities. Their primary function is focused on securing energy supply to final users using available resources in generation, transport and interconnection. Long-term planning models typically use non-linear optimization techniques considering an error not exceeding 5%. The reference model used by UPME in Colombia is limited to an average error of 1.6% considering non-linear modeling estimation techniques. However, they are limited in their ability to anticipate uncharacteristic variations in curves or externalities, which increases the probability of an erroneous prediction. Therefore, this research proposes a model to forecast electricity demand using neural networks in order to anticipate non-characteristic variations. The study first documents current methodologies for the prediction of maximum power demand, as well as the current deficiencies in the used forecasts, A new model is then formulated with the application of neural networks using the algorithm Cascade-Forward Back propagation using MATLAB R2017a. During the model comparison process, it was identified that the data obtained reflects the characteristics of demand behavior with an acceptable margin error equal to 0.5%.
Idioma originalInglés
Páginas (desde-hasta)787-792
Número de páginas6
PublicaciónChemical Engineering Transactions
Volumen67
DOI
EstadoPublicada - 1 sep. 2018

Nota bibliográfica

Publisher Copyright:
Copyright © 2018, AIDIC Servizi S.r.l.

Tipos de Productos Minciencias

  • Artículos de investigación con calidad Q3

Huella

Profundice en los temas de investigación de 'Demand energy forecasting using genetic algorithm to guarantee safety on electrical transportation system'. En conjunto forman una huella única.

Citar esto