TY - JOUR
T1 - Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
AU - Ocampo-López, Carlos
AU - Ospina-Sanjuan, Álvaro
AU - Ramírez-Carmona, Margarita
AU - Rendón-Castrillón, Leidy
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - The leaching processes for metals using organic substances represent a sustainable approach to recover precious minerals from solid matrices. However, the generation of organometallic species and the lack of thermodynamic diagrams make it difficult to advance the understanding of their behavior and optimize the process. In this work, a thermodynamically and stoichiometrically consistent mathematical model was developed to estimate the thermodynamic stability of organic substances during the leaching process, and iron leaching with oxalic acid was used as a case study. The Pourbaix and the global thermodynamic stability diagrams for the system were developed in this study. Using a Gaussian®, it was estimated that the Gibbs free energy formation for (Formula presented.), (Formula presented.) and (Formula presented.) was −1407.51, −2308.38, and −3068.89 kcal/mol. A set of eleven independent reactions was formulated for the sixteen species involved in the leaching process, and its stability functions in terms of Eh and pH were calculated to generate a 3D global thermodynamic stability diagram. According to the Eh-pH diagrams for the leaching process, ferrioxalate was identified as the most stable and predominant species in the leaching process at pH above 6.6 under reductive conditions. The mathematical model developed in this work resulted in a thermodynamic tool for predicting leaching processes.
AB - The leaching processes for metals using organic substances represent a sustainable approach to recover precious minerals from solid matrices. However, the generation of organometallic species and the lack of thermodynamic diagrams make it difficult to advance the understanding of their behavior and optimize the process. In this work, a thermodynamically and stoichiometrically consistent mathematical model was developed to estimate the thermodynamic stability of organic substances during the leaching process, and iron leaching with oxalic acid was used as a case study. The Pourbaix and the global thermodynamic stability diagrams for the system were developed in this study. Using a Gaussian®, it was estimated that the Gibbs free energy formation for (Formula presented.), (Formula presented.) and (Formula presented.) was −1407.51, −2308.38, and −3068.89 kcal/mol. A set of eleven independent reactions was formulated for the sixteen species involved in the leaching process, and its stability functions in terms of Eh and pH were calculated to generate a 3D global thermodynamic stability diagram. According to the Eh-pH diagrams for the leaching process, ferrioxalate was identified as the most stable and predominant species in the leaching process at pH above 6.6 under reductive conditions. The mathematical model developed in this work resulted in a thermodynamic tool for predicting leaching processes.
KW - 3D E-pH diagrams
KW - E-pH diagrams
KW - Pourbaix
KW - free energy
KW - iron
KW - organic leaching
KW - oxalates
KW - stability
UR - http://www.scopus.com/inward/record.url?scp=85138750126&partnerID=8YFLogxK
U2 - 10.3390/met12091424
DO - 10.3390/met12091424
M3 - Artículo en revista científica indexada
AN - SCOPUS:85138750126
SN - 2075-4701
VL - 12
JO - Metals
JF - Metals
IS - 9
M1 - 1424
ER -