TY - JOUR
T1 - Direct functionalization of carbon nanotubes with phosphate
AU - Torres, Ana M.
AU - Hoyos, Lina M.
AU - Bustamante, John J.
AU - Garay-Tapia, Andrés M.
N1 - Publisher Copyright:
© Copyright 2016 American Scientific Publishers All rights reserved.
PY - 2016
Y1 - 2016
N2 - With the goal of functionalizing carbon nanotubes for possible applications in biological and biomedical environments, we investigated the interactions between perfect and defective single walled carbon nanotubes (SWCNTs) and phosphate groups using density functional theory (DFT). The phosphate groups included phosphoric acid (H3PO4) and dihydrogen phosphate (H2PO4). Defects included monovacancy, divacancy, and Stone-Wales (SW) defects. Our results revealed that with H3PO4, functionalization occurs by an electrostatic interaction, and no significant changes were observed in the band structures or in the band gap. With H2PO4, functionalization occurs through C-O interaction, and is mainly favored in the presence of a monovacancy or SW defect. With a monovancy defect, the nanotube preserves its sp2 hybridization, whereas with divacancy and SW defects, local sp3 hybridization occurs. Functionalizationwith H2PO4 resulted in changes in the band structures and the band gap of perfect and defective (10, 0) SWCNTs. These changes are caused by electronic localization states on the Fermi level, but the semiconductor behavior of nanotubes is preserved.
AB - With the goal of functionalizing carbon nanotubes for possible applications in biological and biomedical environments, we investigated the interactions between perfect and defective single walled carbon nanotubes (SWCNTs) and phosphate groups using density functional theory (DFT). The phosphate groups included phosphoric acid (H3PO4) and dihydrogen phosphate (H2PO4). Defects included monovacancy, divacancy, and Stone-Wales (SW) defects. Our results revealed that with H3PO4, functionalization occurs by an electrostatic interaction, and no significant changes were observed in the band structures or in the band gap. With H2PO4, functionalization occurs through C-O interaction, and is mainly favored in the presence of a monovacancy or SW defect. With a monovancy defect, the nanotube preserves its sp2 hybridization, whereas with divacancy and SW defects, local sp3 hybridization occurs. Functionalizationwith H2PO4 resulted in changes in the band structures and the band gap of perfect and defective (10, 0) SWCNTs. These changes are caused by electronic localization states on the Fermi level, but the semiconductor behavior of nanotubes is preserved.
KW - Carbon nanotubes
KW - DFT
KW - Phosphate functionalization
UR - http://www.scopus.com/inward/record.url?scp=85013646961&partnerID=8YFLogxK
U2 - 10.1166/jctn.2016.5765
DO - 10.1166/jctn.2016.5765
M3 - Artículo en revista científica indexada
AN - SCOPUS:85013646961
SN - 1546-1955
VL - 13
SP - 7640
EP - 7648
JO - Journal of Computational and Theoretical Nanoscience
JF - Journal of Computational and Theoretical Nanoscience
IS - 10
ER -