Distributed Consensus for Global Matrix Formation in the Principal Component Pursuit Scenario

Gustavo Suárez , Juan David Velásquez

Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

Resumen

The aim behind principal component pursuit is to recover a low-rank matrix and a sparse matrix from a noisy signal which is the sum of both matrices. This optimization problem is a priori and non-convex and is useful in signal processing, data compression, image processing, machine learning, fluid dynamics, and more. Here, a distributed scheme described by a static undirected graph, where each agent only observes part of the noisy or corrupted matrix, is applied to achieve a consensus; then, a robust approach that can also handle missing values is applied using alternating directions to solve the convex relaxation problem, which actually solves the non-convex problem under some weak assumptions. Some examples of image recovery are shown, where the network of agents achieves consensus exponentially fast.

Idioma originalInglés
Número de artículo3619
PublicaciónApplied Sciences (Switzerland)
Volumen14
N.º9
DOI
EstadoPublicada - may. 2024
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2024 by the authors.

Huella

Profundice en los temas de investigación de 'Distributed Consensus for Global Matrix Formation in the Principal Component Pursuit Scenario'. En conjunto forman una huella única.

Citar esto