TY - JOUR
T1 - Effect of temperature, pH and total organic carbon variations on microbial turnover of 13C3 15N-glyphosate in agricultural soil
AU - Muskus, Angelica M.
AU - Krauss, Martin
AU - Miltner, Anja
AU - Hamer, Ute
AU - Nowak, Karolina M.
N1 - Publisher Copyright:
© 2018
PY - 2019/3/25
Y1 - 2019/3/25
N2 - Glyphosate is the best-selling and the most-used broad-spectrum herbicide worldwide. Microbial conversion of glyphosate to CO2 and biogenic non-extractable residues (bioNER) leads to its complete degradation. The degradation of glyphosate may vary in different soils and it depends on environmental conditions and soil properties. To date, the influence of temperature, soil pH and total organic carbon (TOC) on microbial conversion of glyphosate to bioNER has not been investigated yet. The pH or TOC of an agricultural original soil (pH 6.6, TOC 2.1%) was modified using sulfuric acid or farmyard manure (FYM), respectively. Each treatment: original (I), 3% TOC (II), 4% TOC (III), pH 6.0 (IV) and pH 5.5 (V) was amended with 13C315N-glyphosate and incubated at 10 °C, 20 °C and 30 °C for 39 days. The temperature was the main factor controlling the mineralization and the extractable 13C315N-glyphosate, whereas higher TOC content and lower pH resulted in enhanced formation of 13C-bioNER. After 39 days the cumulative mineralization of 13C-glyphosate was in the range of 12–22% (10 °C), 37–47% (20 °C) and 43–54% (30 °C). Extractable residues of 13C-glyphosate were in the range of 10–21% (10 °C) and 4–10% (20 °C and 30 °C); whereas those of 15N-glyphosate were as follows 20–32% (10 °C) and 12–25% (20 °C and 30 °C). The 13C-NER comprised about 53–69% of 13C-mass balance in soils incubated at 10 °C, but 40–50% in soils incubated at 20 °C and 30 °C. The 15N-NER were higher than the 13C-NER and varied between 62% and 74% at 10 °C, between 53% and 81% at 20 °C and 30 °C. A major formation of 13C-bioNER (72–88% of 13C-NER) at 20 °C and 30 °C was noted in soil amended with FYM. An increased formation of 15N-bioNER (14–17% of 15N-NER) was also observed in FYM-amended soil. The xenobiotic 15N-NER had a major share within the 15N-NER and thus need to be considered when assessing the environmental risk of glyphosate-NER.
AB - Glyphosate is the best-selling and the most-used broad-spectrum herbicide worldwide. Microbial conversion of glyphosate to CO2 and biogenic non-extractable residues (bioNER) leads to its complete degradation. The degradation of glyphosate may vary in different soils and it depends on environmental conditions and soil properties. To date, the influence of temperature, soil pH and total organic carbon (TOC) on microbial conversion of glyphosate to bioNER has not been investigated yet. The pH or TOC of an agricultural original soil (pH 6.6, TOC 2.1%) was modified using sulfuric acid or farmyard manure (FYM), respectively. Each treatment: original (I), 3% TOC (II), 4% TOC (III), pH 6.0 (IV) and pH 5.5 (V) was amended with 13C315N-glyphosate and incubated at 10 °C, 20 °C and 30 °C for 39 days. The temperature was the main factor controlling the mineralization and the extractable 13C315N-glyphosate, whereas higher TOC content and lower pH resulted in enhanced formation of 13C-bioNER. After 39 days the cumulative mineralization of 13C-glyphosate was in the range of 12–22% (10 °C), 37–47% (20 °C) and 43–54% (30 °C). Extractable residues of 13C-glyphosate were in the range of 10–21% (10 °C) and 4–10% (20 °C and 30 °C); whereas those of 15N-glyphosate were as follows 20–32% (10 °C) and 12–25% (20 °C and 30 °C). The 13C-NER comprised about 53–69% of 13C-mass balance in soils incubated at 10 °C, but 40–50% in soils incubated at 20 °C and 30 °C. The 15N-NER were higher than the 13C-NER and varied between 62% and 74% at 10 °C, between 53% and 81% at 20 °C and 30 °C. A major formation of 13C-bioNER (72–88% of 13C-NER) at 20 °C and 30 °C was noted in soil amended with FYM. An increased formation of 15N-bioNER (14–17% of 15N-NER) was also observed in FYM-amended soil. The xenobiotic 15N-NER had a major share within the 15N-NER and thus need to be considered when assessing the environmental risk of glyphosate-NER.
KW - AMPA
KW - Amino acids
KW - Biogenic non-extractable residues
KW - Mineralization
KW - NER
KW - Mineralization
KW - AMPA
KW - Amino acids
KW - Biogenic non-extractable residues
KW - NER
UR - http://www.scopus.com/inward/record.url?scp=85058710166&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2018.12.195
DO - 10.1016/j.scitotenv.2018.12.195
M3 - Artículo en revista científica indexada
C2 - 30580222
AN - SCOPUS:85058710166
SN - 0048-9697
VL - 658
SP - 697
EP - 707
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -