Foresight to 2035 in cold climate fruit trees: scenario alignment, Delphi method, and complement with Python libraries

Título traducido de la contribución: Prospectiva 2035 en frutales de clima frío: alineación de escenarios, método Delphi y complemento con librerías de Python

Jhon Wilder Zartha Sossa, Nolberto Gutiérrez Posada (Co-autor), Adriana María Zuluaga Monsalve (Co-autor), Liliana Valencia Grisales (Co-autor), Jhoan Sebastián Rodríguez Torres (Autor estudiante de pregrado), Gina Lía Orozco Mendoza, Nelson Javier Escobar Mora, Juan Carlos Palacio Piedrahita, John Fredy Moreno Sarta, Julio González Candia

Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

2 Descargas (Pure)

Resumen

Cold-climate fruit trees, such as avocado, blackberry, curuba, lulo, and goldenberry, are economically and socially significant in Andean countries. This study employs foresight methodologies to support strategic planning, prioritize innovations, and reduce uncertainty in decision-making within this agro-industrial chain. Scenario analysis and the Delphi method were applied, analyzing 34 variables using MICMAC, identifying nine as key. Three future objectives were formulated and assessed with key stakeholders through MACTOR software. Cross-impact matrices and five hypotheses guided the construction of a preferred scenario, evaluated using SMICProbExpert software. In the Delphi method, experts reviewed 77 topics across five thematic categories, prioritizing 31 critical technologies and innovations. Artificial intelligence and Python-based natural language processing validated the results, ensuring analytical rigor. The findings provide a strategic framework for aligning efforts and resources with key variables, future objectives, and projected scenarios. This supports the development of targeted projects, policies, and innovation strategies, fostering an environment conducive to open innovation. By promoting collaboration and knowledge exchange, this approach enhances technological advancement and sustainable growth in the sector, with a long-term vision toward 2035.

Título traducido de la contribuciónProspectiva 2035 en frutales de clima frío: alineación de escenarios, método Delphi y complemento con librerías de Python
Idioma originalInglés
Número de artículo2480265
Páginas (desde-hasta)1-19
Número de páginas19
PublicaciónCogent Food and Agriculture
Volumen11
N.º1
DOI
EstadoPublicada - 7 feb. 2025

Nota bibliográfica

Publisher Copyright:
© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Palabras clave

  • Climate fruit trees
  • Foresight
  • Scenarios
  • Delphi method
  • Agroindustry

Tipos de Productos Minciencias

  • Artículos de investigación con calidad A2 / Q2

Huella

Profundice en los temas de investigación de 'Prospectiva 2035 en frutales de clima frío: alineación de escenarios, método Delphi y complemento con librerías de Python'. En conjunto forman una huella única.

Citar esto