Fuzzy Intelligent System for Patients with Preeclampsia in Wearable Devices

Macarena Espinilla, Javier Medina, Ángel Luis García-Fernández, Sixto Campaña, Jorge Londoño

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    23 Citas (Scopus)

    Resumen

    Preeclampsia affects from 5% to 14% of all pregnant women and is responsible for about 14% of maternal deaths per year in the world. This paper is focused on the use of a decision analysis tool for the early detection of preeclampsia in women at risk. This tool applies a fuzzy linguistic approach implemented in a wearable device. In order to develop this tool, a real dataset containing data of pregnant women with high risk of preeclampsia from a health center has been analyzed, and a fuzzy linguistic methodology with two main phases is used. Firstly, linguistic transformation is applied to the dataset to increase the interpretability and flexibility in the analysis of preeclampsia. Secondly, knowledge extraction is done by means of inferring rules using decision trees to classify the dataset. The obtained linguistic rules provide understandable monitoring of preeclampsia based on wearable applications and devices. Furthermore, this paper not only introduces the proposed methodology, but also presents a wearable application prototype which applies the rules inferred from the fuzzy decision tree to detect preeclampsia in women at risk. The proposed methodology and the developed wearable application can be easily adapted to other contexts such as diabetes or hypertension.

    Idioma originalInglés
    Número de artículo7838464
    PublicaciónMobile Information Systems
    Volumen2017
    DOI
    EstadoPublicada - 2017

    Nota bibliográfica

    Publisher Copyright:
    © 2017 Macarena Espinilla et al.

    Huella

    Profundice en los temas de investigación de 'Fuzzy Intelligent System for Patients with Preeclampsia in Wearable Devices'. En conjunto forman una huella única.

    Citar esto