Gear Crack Level Classification by Using KNN and Time-Domain Features from Acoustic Emission Signals under Different Motor Speeds and Loads

Rene Vinicio Sanchez, Pablo Lucero, Jean Carlo Macancela, Mariela Cerrada, Diego Cabrera, Rafael Vasquez

    Producción científica: Capítulo del libro/informe/acta de congresoPonencia publicada en las memorias del evento con ISBNrevisión exhaustiva

    7 Citas (Scopus)

    Resumen

    Diagnosing failures during their initial stage is important to avoid unexpected stops and catastrophic damages, specially for gear boxes that are crucial components in industrial machines. This work addresses the classification of nine levels of crack failure severity in a gearbox. First of all, features are extracted in time domain from signals coming from an acoustic emission (AE) sensor, and then selected by using four different ranking methods. The classification stage uses the k-Nearest Neighbors (KNN) technique. The results indicate that presented levels of severity can be successfully classified with five features extracted from the AE signal for the four ranking methods.

    Idioma originalInglés
    Título de la publicación alojadaProceedings - 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2018
    EditoresChuan Li, Dian Wang, Diego Cabrera, Yong Zhou, Chunlin Zhang
    EditorialInstitute of Electrical and Electronics Engineers Inc.
    Páginas465-470
    Número de páginas6
    ISBN (versión digital)9781538660577
    DOI
    EstadoPublicada - 2 jul. 2018
    Evento2018 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2018 - Xi'an, China
    Duración: 15 ago. 201817 ago. 2018

    Serie de la publicación

    NombreProceedings - 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2018

    Conferencia

    Conferencia2018 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2018
    País/TerritorioChina
    CiudadXi'an
    Período15/08/1817/08/18

    Nota bibliográfica

    Publisher Copyright:
    © 2018 IEEE.

    Huella

    Profundice en los temas de investigación de 'Gear Crack Level Classification by Using KNN and Time-Domain Features from Acoustic Emission Signals under Different Motor Speeds and Loads'. En conjunto forman una huella única.

    Citar esto