Hybrid energy systems sizing for the colombian context: A genetic algorithm and particle swarm optimization approach

José Luis Torres-Madroñero, César Nieto-Londoño, Julián Sierra-Pérez

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    29 Citas (Scopus)

    Resumen

    The use of fossil resources for electricity production is one of the primary reasons for increasing greenhouse emissions and is a non-renewable resource. Therefore, the electricity generation by wind and solar resources have had greater applicability in recent years. Hybrid Renewable Energy Systems (HRES) integrates renewable sources and storage systems, increasing the reliability of generators. For the sizing of HRES, Artificial Intelligence (AI) methods such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) stand out. This article presents the sizing of an HRES for the Colombian context, taking into account the energy consumption by three typical demands, four types of wind turbines, three types of solar panels, and a storage system for the system configuration. Two optimization approaches were set-up with both optimization strategies (i.e., GA and PSO). The first one implies the minimization of the Loss Power Supply Probability (LPSP). In contrast, the second one concerns adding the Total Annual Cost (TAC) or the Levelized Cost of Energy (LCOE) to the objective function. Results obtained show that HRES can supply the energy demand, where the PSO method gives configurations that are more adjusted to the considered electricity demands.

    Idioma originalInglés
    Número de artículo5648
    PublicaciónEnergies
    Volumen13
    N.º21
    DOI
    EstadoPublicada - 1 nov. 2020

    Nota bibliográfica

    Publisher Copyright:
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

    Tipos de Productos Minciencias

    • Artículos de investigación con calidad A2 / Q2

    Huella

    Profundice en los temas de investigación de 'Hybrid energy systems sizing for the colombian context: A genetic algorithm and particle swarm optimization approach'. En conjunto forman una huella única.

    Citar esto