Identificación automática de puntos de autogeneración en series de tiempo de consumo eléctrico Granular Anomaly Detection

Alejandro Patino, Alejandro Pena, Santiago Hoyos, Ana Cecilia Escudero

    Producción científica: Capítulo del libro/informe/acta de congresoPonencia publicada en las memorias del evento con ISBNrevisión exhaustiva

    Resumen

    The decrease in the prices of available technology for self-generation from solar energy, and the high environmental cost of traditional electricity generation systems, have led people in the context of climate change to generate their own energy to meet their consumption needs. For the electricity system at a strategic level, this has brought with it a series of challenges in terms of planning and projection of demand and its decreasing evolution over time, which suggests a technological challenge, especially when large cities or remote communities coexist. This article presents a methodology based on anomaly detection techniques for the characterisation of atypical changes in the behaviour of a time series of energy consumption, in order to identify the installation of self-generation devices by solar panels in a study area. The methodology analysed is based on mainly on two development trends: the first makes use of the anomaly detection algorithms available in the Prophet-Facebook library, while the second uses a series of exhaustive search algorithms to determine atypical changes in the data. The results obtained show the changes in the behaviour of the time series as a result of the integration of these technologies in electricity generation, and where the time interval of analysis plays a determining role in this process.

    Título traducido de la contribuciónAutomatic identification of self-generation points in time series of electricity consumption: Granular Anomaly Detection
    Idioma originalEspañol
    Título de la publicación alojadaProceedings of CISTI 2021 - 16th Iberian Conference on Information Systems and Technologies
    EditoresAlvaro Rocha, Ramiro Goncalves, Francisco Garcia Penalvo, Jose Martins
    EditorialIEEE Computer Society
    ISBN (versión digital)9789895465910
    DOI
    EstadoPublicada - 23 jun. 2021
    Evento16th Iberian Conference on Information Systems and Technologies, CISTI 2021 - Chaves, Portugal
    Duración: 23 jun. 202126 jun. 2021

    Serie de la publicación

    NombreIberian Conference on Information Systems and Technologies, CISTI
    ISSN (versión impresa)2166-0727
    ISSN (versión digital)2166-0735

    Conferencia

    Conferencia16th Iberian Conference on Information Systems and Technologies, CISTI 2021
    País/TerritorioPortugal
    CiudadChaves
    Período23/06/2126/06/21

    Nota bibliográfica

    Publisher Copyright:
    © 2021 AISTI.

    Palabras clave

    • anomaly detection
    • distributed generation
    • energy consumption data
    • solar energy

    Huella

    Profundice en los temas de investigación de 'Identificación automática de puntos de autogeneración en series de tiempo de consumo eléctrico Granular Anomaly Detection'. En conjunto forman una huella única.

    Citar esto