Local mass conservative Hermite interpolation for the solution of flow problems by a multi-domain boundary element approach

W. F. Florez, C. A. Bustamante, M. Giraldo, A. F. Hill

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    4 Citas (Scopus)

    Resumen

    This paper presents a local Hermite radial basis function interpolation scheme for the velocity and pressure fields. The interpolation for velocity satisfies the continuity equation (mass conservative interpolation) while the pressure interpolation obeys the pressure equation. Additionally, the Dual Reciprocity Boundary Element method (DRBEM) is applied to obtain an integral representation of the Navier-Stokes equations. Then, the proposed local interpolation is used to obtain the values of the field variables and their partial derivatives at the boundary of the sub-domains. This interpolation allows one to obtain the boundary values needed for the integral formulas for velocity and pressure at some nodes within the sub-domains. In the proposed approach the boundary elements are merely used to parameterize the geometry, but not for the evaluation of the integrals as it is usually done. The presented multi-domain approach is different from the traditional ones in boundary elements because the resulting integral equations are non singular and the boundary data needed for the boundary integrals are approximated using a local interpolation. Some accurate results for simple Stokes problems and for the Navier-Stokes equations at low Reynolds numbers up to Re = 400 were obtained.

    Idioma originalInglés
    Páginas (desde-hasta)6446-6457
    Número de páginas12
    PublicaciónApplied Mathematics and Computation
    Volumen218
    N.º11
    DOI
    EstadoPublicada - 5 feb. 2012

    Huella

    Profundice en los temas de investigación de 'Local mass conservative Hermite interpolation for the solution of flow problems by a multi-domain boundary element approach'. En conjunto forman una huella única.

    Citar esto