TY - JOUR
T1 - Location of urban logistics spaces (ULS) for two-echelon distribution systems
AU - Ruiz-Meza, José
AU - Meza-Peralta, Karen
AU - Montoya-Torres, Jairo R.
AU - Gonzalez-Feliu, Jesus
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9
Y1 - 2021/9
N2 - The main concern in city logistics is the need to optimize the movement of goods in urban contexts, and to minimize the multiple costs inherent in logistics operations. Inspired by an application in a medium-sized city in Latin America, this paper develops a bi-objective mixed linear integer programming (MILP) model to locate different types of urban logistics spaces (ULS) for the configuration of a two-echelon urban distribution system. The objective functions seek to minimize the costs associated with distance traveled and relocation, in addition to the costs of violation of time windows. This model considers heterogeneous transport, speed assignment, and time windows. For experimental evaluation, two operational scenarios are considered, and Pareto frontiers are obtained to identify the efficient non-dominated solutions to select the most feasible ones from such a set. A case study of a distribution company of goods for supermarkets in the city of Barranquilla, Colombia, is also used to validate the proposed model. These solutions allow decision-makers to define the configuration of ULS networks for urban product delivery.
AB - The main concern in city logistics is the need to optimize the movement of goods in urban contexts, and to minimize the multiple costs inherent in logistics operations. Inspired by an application in a medium-sized city in Latin America, this paper develops a bi-objective mixed linear integer programming (MILP) model to locate different types of urban logistics spaces (ULS) for the configuration of a two-echelon urban distribution system. The objective functions seek to minimize the costs associated with distance traveled and relocation, in addition to the costs of violation of time windows. This model considers heterogeneous transport, speed assignment, and time windows. For experimental evaluation, two operational scenarios are considered, and Pareto frontiers are obtained to identify the efficient non-dominated solutions to select the most feasible ones from such a set. A case study of a distribution company of goods for supermarkets in the city of Barranquilla, Colombia, is also used to validate the proposed model. These solutions allow decision-makers to define the configuration of ULS networks for urban product delivery.
KW - Case study
KW - Location
KW - Mixed-integer linear programming
KW - Multi-objective
KW - Two-echelon distribution systems
KW - Urban Logistics Spaces (ULS)
UR - http://www.scopus.com/inward/record.url?scp=85114867210&partnerID=8YFLogxK
U2 - 10.3390/axioms10030214
DO - 10.3390/axioms10030214
M3 - Artículo en revista científica indexada
AN - SCOPUS:85114867210
SN - 2075-1680
VL - 10
JO - Axioms
JF - Axioms
IS - 3
M1 - 214
ER -