Modeling and Optimization of Concrete Mixtures Using Machine Learning Estimators and Genetic Algorithms

Ana I. Oviedo, Jorge M. Londoño, John F. Vargas, Carolina Zuluaga, Ana Gómez

Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

2 Citas (Scopus)

Resumen

This study presents a methodology to optimize concrete mixtures by integrating machine learning (ML) and genetic algorithms. ML models are used to predict compressive strength, while genetic algorithms optimize the mixture cost under quality constraints. Using a dataset of over 19,000 samples from a local ready-mix concrete producer, various predictive ML models were trained and evaluated regarding cost-effective solutions. The results show that the optimized mixtures meet the desired compressive strength range and are cost-efficient, thus having (Formula presented.) of the solutions yielding a cost below (Formula presented.) of the test cases. CatBoost emerged as the best ML technique, thereby achieving a mean absolute error (MAE) below 5 MPa. This combined approach enhances quality, reduces costs, and improves production efficiency in concrete manufacturing.
Idioma originalInglés
Páginas (desde-hasta)642-658
Número de páginas17
PublicaciónModelling
Volumen5
N.º3
DOI
EstadoPublicada - sep. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 by the authors.

Tipos de Productos Minciencias

  • Artículos de investigación con calidad A2 / Q2

Huella

Profundice en los temas de investigación de 'Modeling and Optimization of Concrete Mixtures Using Machine Learning Estimators and Genetic Algorithms'. En conjunto forman una huella única.

Citar esto