Morphological analysis of plasma electrolytic oxidation coatings formed on Ti6Al4V alloys manufactured by electron beam powder bed fusion

Carlos A. Vargas, Alejandro A. Zuleta, Carlos A. Botero, Libia M. Baena, Juan G. Castaño, Maryory A. Gómez, Jose A. Tamayo

Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

2 Citas (Scopus)

Resumen

This study investigates and compares plasma electrolytic oxidation (PEO) coatings produced on wrought Ti6Al4V alloy substrates with those resulting from electron beam powder bed fusion (PBF-EB). For a duration of 1000 s, a phosphate/silicate electrolyte with a current density of 50 A/cm2 was employed to fabricate the coatings. Surface and polished cross-sections of the coated specimens underwent SEM and X-ray diffraction (XRD) analyses. The obtained coatings exhibit differences of up to approximately 18% in thickness and formation, as well as in their anatase phase. The anatase phase is present at a level of 54.09% in the substrates processed by PBF-EB and 38.54% in wrought substrates. After 1000 s of PEO, the coatings formed on the wrought substrates exhibited higher porosity and larger pores (>1 μm) compared to those produced on the PBF-EB specimens. The PBF-EB coatings had lower porosity because they contained fewer pores larger than 1 μm. The findings imply that the unique microstructural arrangement of PBF-EB-produced additively made Ti6Al4V materials plays a significant impact in the development and morphological properties of PEO oxide coatings.
Idioma originalInglés
PublicaciónHeliyon
Volumen9
N.º9
DOI
EstadoPublicada - 1 sep. 2023

Nota bibliográfica

Publisher Copyright:
© 2023

Palabras clave

  • Plasma electrolytic oxidation
  • Ti6Al4V
  • Coating morphology
  • Additive manufacturing
  • Electron beam powder bed fusion

Tipos de Productos Minciencias

  • Artículos de investigación con calidad A1 / Q1

Huella

Profundice en los temas de investigación de 'Morphological analysis of plasma electrolytic oxidation coatings formed on Ti6Al4V alloys manufactured by electron beam powder bed fusion'. En conjunto forman una huella única.

Citar esto