Morphological and Temporal ECG Features for Myocardial Infarction Detection Using Support Vector Machines

Wilson J. Arenas, Silvia A. Sotelo, Martha L. Zequera, Miguel Altuve

    Producción científica: Capítulo del libro/informe/acta de congresoPonencia publicada en las memorias del evento con ISBNrevisión exhaustiva

    1 Cita (Scopus)

    Resumen

    Myocardial infarction is a leading cause of death worldwide. A 12-lead electrocardiogram (ECG) recording is commonly performed to diagnose this pathology. In this paper, we explored temporal and morphological features extracted from multi-lead ECG signals to classify subjects from the PTB Diagnostic ECG database into healthy control and myocardial infarction using a support vector machine binary classifier. After delineating the 12-lead ECG signals with a wavelet transform-based method, a unique set of characteristic points was obtained for the ECG leads by suppressing outliers and by taking the average of the remaining points. Then, mathematical operations (average, standard deviation, skewness, etc.) performed to the P wave duration, QRS complex duration, ST-T complex, QT interval, T wave duration and RR interval were used as temporal features, and mathematical operations performed to ECG signals bounded by the P wave, QRS complex, ST-T complex and QT interval were used as morphological features. A 10-fold Monte Carlo cross-validation was employed to analyze the reproducibility of the classification results by randomly splitting the dataset into training (70%) and test (30%) sets with balanced classes. Mean classification accuracies above 93% were achieved when the SVM classifier uses only temporal ECG features, only morphological ECG features, and both temporal and morphological ECG features. The best classification performance was achieved when temporal and morphological ECG features are jointly considered by the binary SVM classifier (accuracy 96.67%, error rate 3.33%, sensitivity 97.33% and specificity 96.00%).

    Idioma originalInglés
    Título de la publicación alojada8th Latin American Conference on Biomedical Engineering and 42nd National Conference on Biomedical Engineering - Proceedings of CLAIB-CNIB 2019
    EditoresCésar A. González Díaz, Christian Chapa González, Eric Laciar Leber, Hugo A. Vélez, Norma P. Puente, Dora-Luz Flores, Adriano O. Andrade, Héctor A. Galván, Fabiola Martínez, Renato García, Citlalli J. Trujillo, Aldo R. Mejía
    EditorialSpringer
    Páginas172-181
    Número de páginas10
    ISBN (versión impresa)9783030306472
    DOI
    EstadoPublicada - 2020
    Evento8th Latin American Conference on Biomedical Engineering and the 42nd National Conference on Biomedical Engineering, CLAIB-CNIB 2019 - Cancún, México
    Duración: 2 oct. 20195 oct. 2019

    Serie de la publicación

    NombreIFMBE Proceedings
    Volumen75
    ISSN (versión impresa)1680-0737
    ISSN (versión digital)1433-9277

    Conferencia

    Conferencia8th Latin American Conference on Biomedical Engineering and the 42nd National Conference on Biomedical Engineering, CLAIB-CNIB 2019
    País/TerritorioMéxico
    CiudadCancún
    Período2/10/195/10/19

    Nota bibliográfica

    Publisher Copyright:
    © 2020, Springer Nature Switzerland AG.

    Huella

    Profundice en los temas de investigación de 'Morphological and Temporal ECG Features for Myocardial Infarction Detection Using Support Vector Machines'. En conjunto forman una huella única.

    Citar esto