TY - JOUR
T1 - Novel procedure for the simultaneous determination of the Debye length and electro-optic coefficient for an optically active photorefractive Bi 12SiO20 crystal
AU - Gómez, Jorge A.
AU - Gómez, Héctor Lorduy
AU - Salazar, Ángel
N1 - Funding Information:
J. A. Gómez acknowledges the financial support of the Politécnico Colombiano Jaime Isaza Cadavid for his Ph. D. studies. A. Salazar acknowledges the financial support of the Universidad Pontificia Bolivariana, Medellín-Colombia , and its Centro de Investigación para el Desarrollo y la Innovación , CIDI, through the research project 392A12/08-2 7. The authors also acknowledge the smart and constructive comments and suggestions of the reviewers of the paper.
PY - 2011/1/1
Y1 - 2011/1/1
N2 - We present a novel procedure based on an improved physical model and a versatile numerical fitting technique, to simultaneously determinate the Debye screening length and electro-optic coefficient using a thick sample of an optically active photorefractive crystal Bi12SiO20 (BSO). For the computation, experimental data of gain vs. grating spacing were obtained by a two-beam coupling arrangement. Unlike former calculation models, in our work, the general expression for the diffraction efficiency in the presence of self-diffraction is considered, and the influence of the optical activity in the coupling parameters is had into account for the calculation of the gain values. The fitting of the experimental data to the predicted theoretical behavior by our model is achieved by finding the closest theoretical curve to a set of data sampled from a spline-smoothed curve of the experimental data. Both, the Debye screening length ls and the electro-optic coefficient r41 are used as fitting parameters by searching in a rather wide range for each one of the parameters, so that, the estimation of their values is obtained in a more reliable and direct way from the same experiment. The calculations are performed in diffusion regimen and the procedure leads to ls = 0.22 μm and r41 = 4.5 × 10-12m/V. Because the optical activity can alter the maximum gain and self-diffraction effects influence the energy exchange, the procedure reveals to be physically appropriated for the simultaneous determination of these physical parameters when thick photorefractive crystals with high optical activity are considered.
AB - We present a novel procedure based on an improved physical model and a versatile numerical fitting technique, to simultaneously determinate the Debye screening length and electro-optic coefficient using a thick sample of an optically active photorefractive crystal Bi12SiO20 (BSO). For the computation, experimental data of gain vs. grating spacing were obtained by a two-beam coupling arrangement. Unlike former calculation models, in our work, the general expression for the diffraction efficiency in the presence of self-diffraction is considered, and the influence of the optical activity in the coupling parameters is had into account for the calculation of the gain values. The fitting of the experimental data to the predicted theoretical behavior by our model is achieved by finding the closest theoretical curve to a set of data sampled from a spline-smoothed curve of the experimental data. Both, the Debye screening length ls and the electro-optic coefficient r41 are used as fitting parameters by searching in a rather wide range for each one of the parameters, so that, the estimation of their values is obtained in a more reliable and direct way from the same experiment. The calculations are performed in diffusion regimen and the procedure leads to ls = 0.22 μm and r41 = 4.5 × 10-12m/V. Because the optical activity can alter the maximum gain and self-diffraction effects influence the energy exchange, the procedure reveals to be physically appropriated for the simultaneous determination of these physical parameters when thick photorefractive crystals with high optical activity are considered.
KW - Debye screening length
KW - Electro-optic coefficient
KW - Gain factor
KW - Photorefractive materials
UR - http://www.scopus.com/inward/record.url?scp=78649648599&partnerID=8YFLogxK
U2 - 10.1016/j.optcom.2010.09.030
DO - 10.1016/j.optcom.2010.09.030
M3 - Artículo en revista científica indexada
AN - SCOPUS:78649648599
SN - 0030-4018
VL - 284
SP - 460
EP - 466
JO - Optics Communications
JF - Optics Communications
IS - 1
ER -