TY - JOUR
T1 - Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering
AU - Osorio, M.
AU - Ortiz, I.
AU - Gañán, P.
AU - Naranjo, T.
AU - Zuluaga, R.
AU - van Kooten, T. G.
AU - Castro, C.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/7
Y1 - 2019/7
N2 - Bacterial nanocellulose (BNC) is a natural polymer composed of glucose units with an important application as a two and three-dimensional scaffold for tissue engineering. However, as a polysaccharide, BNC does not have the biological signals of protein biomaterials. Therefore, this paper aims to develop a novel methodology to biomimic soft extracellular matrix (ECM) chemistry on to 3D BNC using the bioengineering of fibroblasts (the cells responsible for producing and regenerating the ECM) to immobilise adhesion proteins such as collagen and fibronectin. Modified 3D BNC (Mod-BNC) biomaterials were morphologically, thermally, and chemically characterised, and furthermore, the cell response was analysed by adhesion studies using atomic force microscopy (AFM), XTT assay, and confocal microscopy. Cell-derived proteins were deposited on the BNC nanoribbon network to modify its surface. The contact angle was increased from 40° to 60° reducing the wettability of the biomaterial, and during thermogravimetry, the proteins in Mod-BNC exhibited an enhanced thermal stability because of the interactions between themselves and BNC. Chemical and immunocytochemistry analyses confirmed the presence of collagen type I and fibronectin on 3D BNC. These proteins activate integrin adhesion pathways that generate stronger cell adhesions. AFM experiments showed higher forces and energies on modified biomaterials, and moreover, the cells that adhered on to Mod-BNC exhibited higher mitochondrial activity and higher cell populations per cubic millimetre than non-modified surfaces (NMod-BNC). Accordingly, it was established that this novel methodology is robust and able to biomimic the chemical surface of soft ECM and immobilise cell-derived adhesion proteins from fibroblast; moreover, the Mod-BNC exhibited better cell response than NMod-BNC because of the biological signals in 3D BNC.
AB - Bacterial nanocellulose (BNC) is a natural polymer composed of glucose units with an important application as a two and three-dimensional scaffold for tissue engineering. However, as a polysaccharide, BNC does not have the biological signals of protein biomaterials. Therefore, this paper aims to develop a novel methodology to biomimic soft extracellular matrix (ECM) chemistry on to 3D BNC using the bioengineering of fibroblasts (the cells responsible for producing and regenerating the ECM) to immobilise adhesion proteins such as collagen and fibronectin. Modified 3D BNC (Mod-BNC) biomaterials were morphologically, thermally, and chemically characterised, and furthermore, the cell response was analysed by adhesion studies using atomic force microscopy (AFM), XTT assay, and confocal microscopy. Cell-derived proteins were deposited on the BNC nanoribbon network to modify its surface. The contact angle was increased from 40° to 60° reducing the wettability of the biomaterial, and during thermogravimetry, the proteins in Mod-BNC exhibited an enhanced thermal stability because of the interactions between themselves and BNC. Chemical and immunocytochemistry analyses confirmed the presence of collagen type I and fibronectin on 3D BNC. These proteins activate integrin adhesion pathways that generate stronger cell adhesions. AFM experiments showed higher forces and energies on modified biomaterials, and moreover, the cells that adhered on to Mod-BNC exhibited higher mitochondrial activity and higher cell populations per cubic millimetre than non-modified surfaces (NMod-BNC). Accordingly, it was established that this novel methodology is robust and able to biomimic the chemical surface of soft ECM and immobilise cell-derived adhesion proteins from fibroblast; moreover, the Mod-BNC exhibited better cell response than NMod-BNC because of the biological signals in 3D BNC.
KW - Adhesion proteins
KW - Bacterial nanocellulose
KW - Biomimicry
KW - Fibroblast
KW - Three-dimensional biomaterials
UR - http://www.scopus.com/inward/record.url?scp=85063061987&partnerID=8YFLogxK
U2 - 10.1016/j.msec.2019.03.045
DO - 10.1016/j.msec.2019.03.045
M3 - Artículo en revista científica indexada
C2 - 30948106
AN - SCOPUS:85063061987
SN - 0928-4931
VL - 100
SP - 697
EP - 705
JO - Materials Science and Engineering C
JF - Materials Science and Engineering C
ER -