Optimizing Bifacial Solar Modules with Trackers: Advanced Temperature Prediction Through Symbolic Regression

Fabian Alonso Lara-Vargas, Carlos Vargas-Salgado, Jesus Águila-León, Dácil Díaz-Bello

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    Resumen

    Accurate temperature prediction in bifacial photovoltaic (PV) modules is critical for optimizing solar energy systems. Conventional models face challenges to balance accuracy, interpretability, and computational efficiency. This study addresses these limitations by introducing a symbolic regression (SR) framework based on genetic algorithms to model nonlinear relationships between environmental variables and module temperature without predefined structures. High-resolution data, including solar radiation, ambient temperature, wind speed, and PV module temperature, were collected at 5 min intervals over a year from a 19.9 MW bifacial PV plant with trackers in San Marcos, Colombia. The SR model performance was compared with multiple linear regression, normal operating cell temperature (NOCT), and empirical regression models. The SR model outperformed others by achieving a root mean squared error (RMSE) of 4.05 °C, coefficient of determination (R2) of 0.91, Spearman’s rank correlation coefficient of 0.95, and mean absolute error (MAE) of 2.25 °C. Its hybrid structure combines linear ambient temperature dependencies with nonlinear trigonometric terms capturing solar radiation dynamics. The SR model effectively balances accuracy and interpretability, providing information for modeling bifacial PV systems.
    Idioma originalInglés
    Páginas (desde-hasta)1
    Número de páginas25
    PublicaciónEnergies
    Volumen18
    N.º8
    DOI
    EstadoPublicada - 15 abr. 2025

    Tipos de Productos Minciencias

    • Artículos de investigación con calidad A1 / Q1

    Citar esto