Predicting intensive care unit-acquired weakness: A multilayer perceptron neural network approach

Mateo Zuluaga Gomez, Daniel González Arroyave, Carlos Martín Ardila

Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

Resumen

In this editorial, we comment on the article by Wang and Long, published in a recent issue of the World Journal of Clinical Cases. The article addresses the challenge of predicting intensive care unit-acquired weakness (ICUAW), a neuromuscular disorder affecting critically ill patients, by employing a novel processing strategy based on repeated machine learning. The editorial presents a dataset comprising clinical, demographic, and laboratory variables from intensive care unit (ICU) patients and employs a multilayer perceptron neural network model to predict ICUAW. The authors also performed a feature importance analysis to identify the most relevant risk factors for ICUAW. This editorial contributes to the growing body of literature on predictive modeling in critical care, offering insights into the potential of machine learning approaches to improve patient outcomes and guide clinical decision-making in the ICU setting.

Idioma originalEspañol (Colombia)
PublicaciónWorld Journal of Clinical Cases
Volumen12
N.º12
DOI
EstadoPublicada - 1 abr. 2024

Palabras clave

  • Computer neural network
  • Intensive care unit-acquired weakness
  • Intensive care unit
  • Machine learning; Risk factors

Tipos de Productos Minciencias

  • Artículos de investigación con calidad D

Citar esto