Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study

Montse Palacio, Elisenda Bonet-Carne, Teresa Cobo, Alvaro Perez-Moreno, Joan Sabrià, Jute Richter, Marian Kacerovsky, Bo Jacobsson, Raúl A. García-Posada, Fernando Bugatto, Ramon Santisteve, Àngels Vives, Mauro Parra-Cordero, Edgar Hernandez-Andrade, José Luis Bartha, Pilar Carretero-Lucena, Kai Lit Tan, Rogelio Cruz-Martínez, Minke Burke, Suseela VavilalaJ. Igor Iruretagoyena, Juan Luis Delgado, Mauro Schenone, Josep Vilanova, Francesc Botet, George S.H. Yeo, Jon Hyett, Jan Deprest, Roberto Romero, Eduard Gratacos, Marta López, Dulce Castro, Juan Pablo Piraquive, Juan Carlos Ramírez, Federico Migliorelli, Mónica Martínez-Terrón, Silvia Ferrero Martínez, Dolores Gómez Roig, Elisenda Bonet-Carné, Àlvaro Pérez, Mara Domínguez, David Coronado, Philip DeKoninck, Ivana Musilova, Tomas Bestvina, Jan Maly, Zdenek Kokstein, Lars Cedergren, Patricia Johansson, Panagiotis Tsiartas, Karin Sävman, Maria Hallingström, Raúl García Posadas, Fernando Bugatto González, Maria Antonia Fajardo, Rocío Quintero Prado, Victoria Melero Jiménez, Isabel Benavente Fernández, Ramon Santisteve Prat, Benjamín de la Barrera Correa, Elena Gómez Valencia, Raúl Martínez Rodríguez, Elionor Roma Mas, Àngels Vives Argilagós, Alejandra Rodríguez Veret, Esperanza García Cancela, Paloma Araujo Salinas, Álvaro Sepúlveda-Martínez, Hyunyoung Ahn, Eugenia Antolín, Pilar Carretero Lucena, Francisca Molina García, Noemí Jiménez Garrido, Carmen Contreras Tallón, Belén Morillo Antón, Miguel Martínez-Rodríguez, Jon Hyatt, Ritu Mogra, Neus Bons

Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

48 Citas (Scopus)

Resumen

Background Prediction of neonatal respiratory morbidity may be useful to plan delivery in complicated pregnancies. The limited predictive performance of the current diagnostic tests together with the risks of an invasive procedure restricts the use of fetal lung maturity assessment. Objective The objective of the study was to evaluate the performance of quantitative ultrasound texture analysis of the fetal lung (quantusFLM) to predict neonatal respiratory morbidity in preterm and early-term (<39.0 weeks) deliveries. Study Design This was a prospective multicenter study conducted in 20 centers worldwide. Fetal lung ultrasound images were obtained at 25.0–38.6 weeks of gestation within 48 hours of delivery, stored in Digital Imaging and Communication in Medicine format, and analyzed with quantusFLM. Physicians were blinded to the analysis. At delivery, perinatal outcomes and the occurrence of neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, were registered. The performance of the ultrasound texture analysis test to predict neonatal respiratory morbidity was evaluated. Results A total of 883 images were collected, but 17.3% were discarded because of poor image quality or exclusion criteria, leaving 730 observations for the final analysis. The prevalence of neonatal respiratory morbidity was 13.8% (101 of 730). The quantusFLM predicted neonatal respiratory morbidity with a sensitivity, specificity, positive and negative predictive values of 74.3% (75 of 101), 88.6% (557 of 629), 51.0% (75 of 147), and 95.5% (557 of 583), respectively. Accuracy was 86.5% (632 of 730) and positive and negative likelihood ratios were 6.5 and 0.3, respectively. Conclusion The quantusFLM predicted neonatal respiratory morbidity with an accuracy similar to that previously reported for other tests with the advantage of being a noninvasive technique.

Idioma originalInglés
Páginas (desde-hasta)196.e1-196.e14
PublicaciónAmerican Journal of Obstetrics and Gynecology
Volumen217
N.º2
DOI
EstadoPublicada - 1 ago. 2017
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2017

Huella

Profundice en los temas de investigación de 'Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study'. En conjunto forman una huella única.

Citar esto