Resumen
This article presents the results of the research related to the experimental behavior of alumina coatings obtained from micrometric size particles and deposited through a thermal spraying by flame process on an AISI 304 stainless steel substrate when it is subjected to erosive wear caused by cavitation through a vibratory apparatus. The methodology used to reach the proposed objective consisted of five phases in the first a morphological and chemical characterization of the materials used, was carried out; the second was the adaptation of UIP1000hd ultrasound equipment to the requirements demanded by the ASTM G32-16 standard (standard test method for erosion by cavitation using vibrating apparatus); afterwards, test pieces of AISI 304 stainless steel were tested to verify the performance of the equipment used, the validation of the wear phenomenon present in the specimens was carried out through scanning electron microscopy tests in order to observe the evolution of the footprint left over the specimen; as a fourth phase, the deposition of the alumina coatings was carried out through a conventional oxyacetylene combustion equipment and an Eutalloy 85 BX gun; finally micro-hardness and erosive wear resistance tests were carried out on AISI 304 stainless steel specimens without and with alumina coatings. The results obtained allowed to validate the operation of the adapted equipment for the performance of the tests since the percentage of average error between the experimental and theoretical data was of 4,5% for AISI 304 stainless steel; regarding the behavior of alumina coatings a 26,23% reduction of material loss was obtained with respect to the AISI 304 stainless steel which represents a significant improvement and encourages its use when mechanical elements are subjected to erosive wear caused by cavitation.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 6-12 |
Número de páginas | 6 |
Publicación | Respuestas |
Volumen | 23 |
N.º | 1 |
DOI | |
Estado | Publicada - 2018 |
Palabras clave
- Alumina
- Coatings
- Erosion
- Wear
Tipos de Productos Minciencias
- Artículos de investigación con calidad C