Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in d.c. and a.c. magnetic fields

Jorge H. Sánchez, Carlos Rinaldi

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    32 Citas (Scopus)

    Resumen

    The rotational Brownian motion of magnetized tri-axial ellipsoidal particles (orthotropic particles) suspended in a Newtonian fluid, in the dilute suspension limit, under applied d.c. and a.c. magnetic fields was studied using rotational Brownian dynamics simulations. The algorithm describing the change in the suspension magnetization was obtained from the stochastic angular momentum equation using the fluctuation-dissipation theorem and a quaternion formulation of orientation space. Simulation results are in agreement with the Langevin function for equilibrium magnetization and with single-exponential relaxation from equilibrium at small fields using Perrin's effective relaxation time. Dynamic susceptibilities for ellipsoidal particles of different aspect ratios were obtained from the response to oscillating magnetic fields of different frequencies and described by Debye's model for the complex susceptibility using Perrin's effective relaxation time. Simulations at high equilibrium and probe fields indicate that Perrin's effective relaxation time continues to describe relaxation from equilibrium and response to oscillating fields even beyond the small field limit.

    Idioma originalInglés
    Páginas (desde-hasta)2985-2991
    Número de páginas7
    PublicaciónJournal of Magnetism and Magnetic Materials
    Volumen321
    N.º19
    DOI
    EstadoPublicada - oct. 2009

    Huella

    Profundice en los temas de investigación de 'Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in d.c. and a.c. magnetic fields'. En conjunto forman una huella única.

    Citar esto