Support vector machine and artificial neural network implementation in embedded systems for real time arrhythmias detection

Andrés Orozco-Duque, Santiago Rúa, Santiago Zuluaga, Alfredo Redondo, Jose V. Restrepo, John Bustamante

Producción científica: Capítulo del libro/informe/acta de congresoPonencia publicada en las memorias del evento con ISBNrevisión exhaustiva

5 Citas (Scopus)

Resumen

This article presents the development and implementation of an artificial neural network (ANN) and a support vector machine (SVM) on a 32-bit ARM® Cortex® M4 microcontroller core from Freescale Semiconductor and on a FPGA Spartan® 6 from Xilinx™, looking for real-time detection of ventricular tachycardia (VT) and ventricular fibrillation (VF). They were compared in terms of accuracy and computational cost. A Fast Wavelet Transform (FWT) was used, and the energy in each sub-band frequency was calculated in the feature extraction stage. For the training and validation algorithms, labeled signals from MIT-BIH database with normal sinus rhythm, VF and VT in a time window of 2 seconds were used. Test results achieve an accuracy of 99.46% for both ANN and SVM with execution time less than 0.6 ms in microcontroller and 30 μs in FPGA for ANN and less than 30 ms in a microcontroller for SVM. The test was done with a 32 MHz clock.

Idioma originalInglés
Título de la publicación alojadaBIOSIGNALS 2013 - Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing
Páginas310-313
Número de páginas4
EstadoPublicada - 2013
EventoInternational Conference on Bio-Inspired Systems and Signal Processing, BIOSIGNALS 2013 - Barcelona, Espana
Duración: 11 feb. 201314 feb. 2013

Serie de la publicación

NombreBIOSIGNALS 2013 - Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing

Conferencia

ConferenciaInternational Conference on Bio-Inspired Systems and Signal Processing, BIOSIGNALS 2013
País/TerritorioEspana
CiudadBarcelona
Período11/02/1314/02/13

Huella

Profundice en los temas de investigación de 'Support vector machine and artificial neural network implementation in embedded systems for real time arrhythmias detection'. En conjunto forman una huella única.

Citar esto