The development of a multi-stage learning scheme using new tissue descriptors for automatic grading of prostatic carcinoma

Clara Mosquera-Lopez, Sos Agaian, Alejandro Velez-Hoyos

Producción científica: Capítulo del libro/informe/acta de congresoPonencia publicada en las memorias del evento con ISBNrevisión exhaustiva

8 Citas (Scopus)

Resumen

This paper introduces a new system for the automated classification of prostatic carcinomas from biopsy images. The important components of the proposed system are (1) the new features for tissue description based on hyper-complex wavelet analysis, quaternion color ratios, and modified local binary patterns; and (2) a new framework for multi-stage learning that integrates both multi-class and binary classifiers. The system performance is estimated by employing Hold-out cross-validation in a dataset of 71 prostate cancer biopsy images with different Gleason grades. Simulation results show that the presented technique is able to correctly classify images in 98.89% of the test cases. Furthermore, the system is robust in terms of sensitivity (0.9833) and specificity (0.9917). We have demonstrated the efficacy of our system in distinguishing between Gleason grades 3, 4 and 5.

Idioma originalInglés
Título de la publicación alojada2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas3586-3590
Número de páginas5
ISBN (versión impresa)9781479928927
DOI
EstadoPublicada - 2014
Publicado de forma externa
Evento2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italia
Duración: 4 may. 20149 may. 2014

Serie de la publicación

NombreICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (versión impresa)1520-6149

Conferencia

Conferencia2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
País/TerritorioItalia
CiudadFlorence
Período4/05/149/05/14

Huella

Profundice en los temas de investigación de 'The development of a multi-stage learning scheme using new tissue descriptors for automatic grading of prostatic carcinoma'. En conjunto forman una huella única.

Citar esto