Tuberculosis in Prisons: Importance of Considering the Clustering in the Analysis of Cross-Sectional Studies

Diana Marín, Yoav Keynan, Shrikant I. Bangdiwala, Lucelly López, Zulma Vanessa Rueda

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    Resumen

    The level of clustering and the adjustment by cluster-robust standard errors have yet to be widely considered and reported in cross-sectional studies of tuberculosis (TB) in prisons. In two cross-sectional studies of people deprived of liberty (PDL) in Medellin, we evaluated the impact of adjustment versus failure to adjust by clustering on prevalence ratio (PR) and 95% confidence interval (CI). We used log-binomial regression, Poisson regression, generalized estimating equations (GEE), and mixed-effects regression models. We used cluster-robust standard errors and bias-corrected standard errors. The odds ratio (OR) was 20% higher than the PR when the TB prevalence was >10% in at least one of the exposure factors. When there are three levels of clusters (city, prison, and courtyard), the cluster that had the strongest effect was the courtyard, and the 95% CI estimated with GEE and mixed-effect models were narrower than those estimated with Poisson and binomial models. Exposure factors lost their significance when we used bias-corrected standard errors due to the smaller number of clusters. Tuberculosis transmission dynamics in prisons dictate a strong cluster effect that needs to be considered and adjusted for. The omission of cluster structure and bias-corrected by the small number of clusters can lead to wrong inferences.

    Idioma originalInglés
    Número de artículo5423
    PublicaciónInternational Journal of Environmental Research and Public Health
    Volumen20
    N.º7
    DOI
    EstadoPublicada - abr. 2023

    Nota bibliográfica

    Publisher Copyright:
    © 2023 by the authors.

    Huella

    Profundice en los temas de investigación de 'Tuberculosis in Prisons: Importance of Considering the Clustering in the Analysis of Cross-Sectional Studies'. En conjunto forman una huella única.

    Citar esto