Resumen
This work presents an embedded computing framework for the analysis and design of large scale algorithms utilized in the estimation of acoustic doubly dispersive, randomly time-variant, underwater communication channels. Channel estimation results are used, in turn, in the proposed framework for the development of efficient high performance algorithms, based on fast Fourier transformations, for the search, detection, estimation, and tracking (SDET) of underwater moving objects through acoustic wavefront signal analysis techniques associated with real-time electronic surveillance and acoustic monitoring (eSAM) operations. Particular importance is given in this work to the estimation of the range and speed of deep underwater moving objects modeled as point targets. The work demonstrates how to use Kronecker products signal algebra (KSA), a branch of finite-dimensional tensor signal algebra, is used as a mathematical language to assist in the development and implementation of the embedded computing algorithms.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2017 IEEE 60th International Midwest Symposium on Circuits and Systems, MWSCAS 2017 |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | 188-191 |
Número de páginas | 4 |
ISBN (versión digital) | 9781509063895 |
DOI | |
Estado | Publicada - 27 sep. 2017 |
Evento | 60th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2017 - Boston, Estados Unidos Duración: 6 ago. 2017 → 9 ago. 2017 |
Serie de la publicación
Nombre | Midwest Symposium on Circuits and Systems |
---|---|
Volumen | 2017-August |
ISSN (versión impresa) | 1548-3746 |
Conferencia
Conferencia | 60th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2017 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | Boston |
Período | 6/08/17 → 9/08/17 |
Nota bibliográfica
Publisher Copyright:© 2017 IEEE.