TY - JOUR
T1 - Unsupervised human activity recognition using the clustering approach
T2 - A review
AU - Colpas, Paola Ariza
AU - Vicario, Enrico
AU - De-La-Hoz-Franco, Emiro
AU - Pineres-Melo, Marlon
AU - Oviedo-Carrascal, Ana
AU - Patara, Fulvio
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Currently, many applications have emerged from the implementation of software development and hardware use, known as the Internet of things. One of the most important application areas of this type of technology is in health care. Various applications arise daily in order to improve the quality of life and to promote an improvement in the treatments of patients at home that suffer from different pathologies. That is why there has emerged a line of work of great interest, focused on the study and analysis of daily life activities, on the use of different data analysis techniques to identify and to help manage this type of patient. This article shows the result of the systematic review of the literature on the use of the Clustering method, which is one of the most used techniques in the analysis of unsupervised data applied to activities of daily living, as well as the description of variables of high importance as a year of publication, type of article, most used algorithms, types of dataset used, and metrics implemented. These data will allow the reader to locate the recent results of the application of this technique to a particular area of knowledge.
AB - Currently, many applications have emerged from the implementation of software development and hardware use, known as the Internet of things. One of the most important application areas of this type of technology is in health care. Various applications arise daily in order to improve the quality of life and to promote an improvement in the treatments of patients at home that suffer from different pathologies. That is why there has emerged a line of work of great interest, focused on the study and analysis of daily life activities, on the use of different data analysis techniques to identify and to help manage this type of patient. This article shows the result of the systematic review of the literature on the use of the Clustering method, which is one of the most used techniques in the analysis of unsupervised data applied to activities of daily living, as well as the description of variables of high importance as a year of publication, type of article, most used algorithms, types of dataset used, and metrics implemented. These data will allow the reader to locate the recent results of the application of this technique to a particular area of knowledge.
KW - AAL
KW - ADL
KW - ARS
KW - Activities of daily living
KW - Activity recognition systems
KW - Ambient assisted living
KW - Clustering
KW - HAR
KW - Human activity recognition
KW - Unsupervised activity recognition
UR - http://www.scopus.com/inward/record.url?scp=85084440408&partnerID=8YFLogxK
U2 - 10.3390/s20092702
DO - 10.3390/s20092702
M3 - Artículo de revisión
C2 - 32397446
AN - SCOPUS:85084440408
SN - 1424-8220
VL - 20
JO - Sensors (Switzerland)
JF - Sensors (Switzerland)
IS - 9
M1 - 2702
ER -