UPB MONTERÍA. Temperature Prediction for Photovoltaic Inverters Using Particle Swarm Optimization-Based Symbolic Regression: A Comparative Study

Fabian Alonso Lara-Vargas, Jesús Águila-León, Carlos Vargas-Salgado, Oscar J. Suarez

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    Resumen

    Accurate temperature modeling is crucial for main taining the efficiency and reliability of solar inverters. This paper presents an innovative application of symbolic regression based on particle swarm optimization (PSO) for predicting the temperature of photovoltaic inverters, offering a novel approach that balances accuracy and computational efficiency. The study evaluates the performance of a PSO-based symbolic regression model compared to multiple linear regression (MLR) and a symbolic regression model based on genetic algorithms (GA). The models were developed using a dataset that included inverter temperature, active power, and DC bus voltage, collected over a year in hourly intervals from a rooftop photovoltaic system in a tropical region. The dataset was divided, with 70% used for training and the remaining 30% for testing. The symbolic regres sion model based on PSO demonstrated superior performance, achieving lower values of the root mean square error (RMSE) and mean absolute error (MAE) of 3.97 and 3.31, respectively. Furthermore, the PSO-based model effectively captured the nonlinear relationships between variables, outperforming the MLR model. It also exhibited greater computational efficiency, requiring fewer iterations than traditional symbolic regression approaches. These findings open new possibilities for real-time monitoring of photovoltaic inverters and suggest future research directions, such as generalizing the PSO model to different environmental conditions and inverter types.

    Idioma originalInglés
    Número de artículo131
    Páginas (desde-hasta)1325-1334
    Número de páginas10
    PublicaciónInternational Journal of Advanced Computer Science and Applications
    Volumen16
    N.º2
    DOI
    EstadoPublicada - 2025

    Nota bibliográfica

    Publisher Copyright:
    © (2025), (Science and Information Organization). All rights reserved.

    Tipos de Productos Minciencias

    • Artículos de investigación con calidad Q3

    Huella

    Profundice en los temas de investigación de 'UPB MONTERÍA. Temperature Prediction for Photovoltaic Inverters Using Particle Swarm Optimization-Based Symbolic Regression: A Comparative Study'. En conjunto forman una huella única.

    Citar esto