Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis

Ruben Medina, Jean Carlo Macancela, Pablo Lucero, Diego Cabrera, Mariela Cerrada, René Vinicio Sánchez, Rafael E. Vásquez

    Producción científica: Contribución a una revistaArtículo en revista científica indexadarevisión exhaustiva

    25 Citas (Scopus)

    Resumen

    This paper addresses the use of two algorithms based on symbolic dynamics analysis of vibration signal for fault diagnosis in gearboxes. The symbolic dynamics algorithm (SDA) works by subdividing the phase space described by the Poincaré plot into several angular regions; then, a symbol is assigned to each region. The probability distributions generated by the set of symbols are considered as features for classification of faults in a gearbox. The peak symbolic dynamics algorithm (PSDA) is a variant that extracts a sequence of peaks from the vibration signals and then performs the phase-space subdivision and symbol coding. A gearbox vibration signal dataset is analyzed for classifying 10 types of faults. Fault classification is attained using a multi-class support vector machine. The highest accuracy attained using k-fold cross-validation is 100.0% for load L3 with SDA and 100% with load L2 with PSDA. The accuracy considering all signals in the gearbox dataset is 99.2% with SDA and 99.8% with PSDA. The algorithms proposed have the advantage of being simple, accurate, and fast, and they could be adapted for online condition monitoring.

    Idioma originalInglés
    Páginas (desde-hasta)2195-2214
    Número de páginas20
    PublicaciónInternational Journal of Advanced Manufacturing Technology
    Volumen104
    N.º5-8
    DOI
    EstadoPublicada - 1 oct. 2019

    Nota bibliográfica

    Publisher Copyright:
    © 2019, Springer-Verlag London Ltd., part of Springer Nature.

    Tipos de Productos Minciencias

    • Artículos de investigación con calidad A1 / Q1

    Huella

    Profundice en los temas de investigación de 'Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis'. En conjunto forman una huella única.

    Citar esto